Total Synthesis of (±)-Distormadines A and B

Alexandre E. R. Jolibois, William Lewis, and Christopher J. Moody*

Org. Lett., Article ASAP

OR
$$MeO_2C$$
 N NH_2 NH_2

Feng Zhang
Wipf Group Current Literature
Feb. 15, 2014

Introduction

Distormadines A and B were isolated from the New Zealand ascidian Pseudodistoma aureum by Copp and coworkers in 2003.

Distormadine A exhibited mild antifungal activity but failed to exhibit any biological activity in a range of antitumour, cytotoxicity, anti-inflammatory, and antimycobacterial tests.

These unusual structures possess a unique tetracyclic core that comprises a pyrano[2,3,4-de] quinoline fused to a butenolide provoked our interest.

Until now, only one compound has been reported which possesses a similar pyranoquinoline core, a synthetic compound related to the aptamine alkaloids.

J. Org. Chem. 2012, 77, 10461-10467.

Retrosynthesis Analysis of Distomadine B (Pg = Protecting Group).

Synthesis of 5-Bromoquinolines 5 and 10

Synthesis of the Model Tetracyclic Core of Distomadine B

X-ray crystal structure of 13

Synthesis of γ -Butenolide 19 Core of Distomadine B

Feng Zhang @ Wipf Group Page 7 of 11 02/15/2014

Completion of Synthesis of Distomadine B

X-ray crystal structure of 21

Completion of the Synthesis of Distomadine A

X-ray crystal structure of 22

Conclusions

- We have achieved the first total syntheses of distornadines A and B in 14 steps (3.5% yield) and 13 steps (5.6% yield), respectively
- The key intermediate structures were confirmed by X-ray crystallography.
- Highlight of this synthesis routes were:

the construction of the butenolide by Suzuki cross-coupling oxidation of the resulting alkene the intramolecular aldol lactonization sequence

Thanks!